Synthesis, structure, and reactivity of (triphenylarsoranylidene)-methylcyclohepta-2,4,6-trienone derivatives: reactions with heterocumulenes and an activated acetylene

Yuhki Mitsumoto and Makoto. Nitta*
Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan

Received (in Cambridge, UK) 10th June 2002, Accepted 12th August 2002
First published as an Advance Article on the web 9th September 2002

Stable arsonium ylide derivatives 7a,b bearing cyclohepta-2,4,6-trienyl and electron-withdrawing $\mathrm{CO}_{2} \mathrm{Et}$ and CN groups, respectively, have been prepared for the first time through a reaction of 2-chlorocyclohepta-2,4,6-trienone with the corresponding arsonium methylide derivatives in the presence of $\mathrm{Bu}^{t} \mathrm{OK}$. Compounds $7 \mathbf{a}, \mathbf{b}$ are isolated as stable crystalline compounds, which do not undergo hydrolysis even in acidic conditions. The X-ray crystal analysis revealed that their As-O bond distances (2.31 Å for $7 \mathbf{a}, 2.39 \AA$ for $7 \mathbf{b}$) lie below the sum of the van der Waals radii ($3.37 \AA$), and thus, there is appreciable bonding interaction between the arsenic and the oxygen elements. With a view to constructing a series of cyclohepta-annulated heterocycles and in order to gain a better understanding of a series of arsonium ylides, 7a,b were allowed to react with heterocumulenes such as carbon disulfide, phenyl isothiocyanate, diphenylcarbodiimido, and phenyl isocyanate, in a Wittig type reaction followed by electrocyclization or a formal [$8+2$ 2]-type cycloaddition eliminating triphenylarsine sulfide or oxide to give 2 H -cyclohepta[b]furan-2-thione, its imine, 2 -phenylimino- 2 H -cyclohepta[b]pyrrole, and 2 H -cyclohepta[b]furan-2-one. On the other hand, the reactions of 7a,b with dimethyl acetylenedicarboxylate (DMAD) give azulene derivatives.

Introduction

Whereas extensive studies on phosphonium ylides have been published, relatively little attention has been paid to arsonium ylides. Arsonium ylides may be represented as a resonance hybrid of a pentacovalent arsenic structure of 1-A and ylide structure 1-B; they are easily prepared, and are of particular interest as regards their reactivity (Fig. 1). They are more

2a: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$
b: $\mathrm{R}=\mathrm{CN}$
c: $R=H$

7a: $R=\mathrm{CO}_{2} \mathrm{Et}$
b: $\mathrm{R}=\mathrm{CN}$

1-B

3: $\mathrm{M}=\mathrm{P}$
4: $M=A s$
5: $M=S b$
6: $\mathrm{M}=\mathrm{Bi}$

Fig. 1
reactive than analogous phosphonium or sulfonium ylides, and they may provide alkenes or epoxides, depending on the nature of the substituents on both the ylidic carbon atom and the arsenic atom and also, to some extent, the solvent used. ${ }^{1}$ The difference between arsonium and phosphonium ylides is commonly ascribed to less efficient $\mathrm{p} \pi-\mathrm{d} \pi$ overlap between the

C-sp2 orbitals and the larger and more diffuse 4 d orbitals of arsenic, and to decreased electrostatic interaction across the ylide bond. Therefore, contribution of the "covalent" canonical form 1-A should become smaller as compared with the corresponding phosphonium ylides. ${ }^{1}$ Arsonium ylides are commonly less stable than the corresponding phosphonium ylides, but those bearing electron-withdrawing groups such as monobenzoyl ${ }^{2}$ and two pentafluoropropionyl ${ }^{3,4}$ are relatively stable, and X-ray crystallographic analysis of isolated compounds was undertaken. Previously, Kawamoto and co-workers have reported structural studies ${ }^{5,6}$ of 2-(triphenylphosphoranyl-idenemethyl)cyclohepta-2,4,6-trienone derivatives 2a-c and their reactivities. ${ }^{7,8}$ The X-ray crystallographic analysis of 2a,b has revealed that there is appreciable coordinative interaction between the phosphorus and the oxygen atoms in the compounds. In this context, we have reported recently the reactions of $\mathbf{2 a}-\mathbf{c}^{9}$ and their aza-analogues $\mathbf{3 - 6},{ }^{10,11}$ with heterocumulenes to provide new methodology for constructing cycloheptaannulated five-membered heterocycles (heteroazulenes). In order to gain a better understanding of this class of arsonium ylides, we have embarked on the preparation of 2-[triphenyl-arsoranylidene(ethoxycarbonyl)methyl)cyclohepta-2,4,6-tri-
enone 7a and 2-[triphenylarsoranylidene(cyano)methyl]cyclo-hepta-2,4,6-trienone $\mathbf{7 b}$. We report herein the first synthesis and X-ray structure analyses of $7 \mathbf{a}, \mathbf{b}$, their reactivities toward heterocumulenes and dimethyl acetylenedicarboxylate (DMAD) resulting in the formation of heteroazulenes and an azulene derivative.

Results and discussion

(a) Synthesis

Previously, the synthesis of (triphenylphosphoranylidene-methyl)cyclohepta-2,4,6-trienone derivatives $\mathbf{2 a - c}$ has been accomplished by the reaction of 2-chlorocyclohepta-2,4,6trienone $\mathbf{1 0}$ with triphenylphosphonium methylide derivatives
in THF. ${ }^{6,9}$ The mechanistic aspects of the reaction are also clarified through the reaction of 2-chloro- and 2-methoxy-3,5,7-trideuteriocyclohepta-2,4,6-trienones with triphenylphosphonium methylide. ${ }^{12}$ This procedure is applicable to the preparation of (triphenylarsoranylidenemethyl)cyclohepta-$2,4,6$-trienone derivatives 7a,b. The reactions of 2 -chloro-cyclohepta-2,4,6-trienone $\mathbf{1 0}$ with arsonium ylides $\mathbf{9 a}, \mathbf{b}$, which are generated in situ through the reaction of ethoxycarbonylmethyltriphenylarsonium bromide $\mathbf{8 a}{ }^{13}$ and cyanomethyltriphenylarsonium bromide $\mathbf{8 \mathbf { b } ^ { 1 3 , 1 4 }}$ with But ${ }^{\text {t }} \mathrm{OK}$, easily afforded 7a,b, respectively (Scheme 1). The structures of new com-

Scheme 1 Reagents and conditions: i, $\mathrm{Bu}^{t} \mathrm{OK}, \mathrm{THF}$, rt.
pounds 7a,b were confirmed from inspection of the spectroscopic data including ${ }^{1} \mathrm{H}$ NMR spectra, IR, UV-Vis, and mass spectral data, as well as elemental analysis, and finally X-ray crystal structure analysis. We propose the pathways for the formation of 7a,b as outlined in Scheme 1, whereby arsonium ylides $9 \mathbf{a}, \mathbf{b}$ attack the C-7 position of $\mathbf{1 0}$ (abnormal substitution) ${ }^{12,15}$ to give intermediates 11a,b, which undergo hydrogen migration regenerating arsoranes $\mathbf{1 2 a}, \mathbf{b}$ and subsequent elimination of HCl give $7 \mathbf{a}, \mathbf{b}$, respectively. The yields of $7 \mathbf{a}, \mathbf{b}$ are rather modest, and thus, the attack of $9 \mathbf{a}, \mathbf{b}$ at the 7 -position of 10 does not seem to occur selectively. This assumption was confirmed by monitoring the reaction by ${ }^{1} \mathrm{H}$ NMR to yield a complicated mixture of unassignable products.

(b) Structure

The assigned ${ }^{1} \mathrm{H}$ NMR spectra of $7 \mathbf{a}, \mathbf{b}$ by $\mathrm{H}-\mathrm{H}$ COSY resemble each other, and they are similar to those of 2a-c. ${ }^{9}$ ORTEP drawings of $7 \mathbf{a}, \mathbf{b}$ are shown in Fig. 2. Fig. 2 shows that the arsenic atoms of $7 \mathbf{a}, \mathbf{b}$ lie between the center of a trigonal bipyramid configuration $[(\mathrm{O} 2$ and C 8 for 7a; O 1 and C 10 for 7b) in apical position, (C8, C10, and C16 for 7a; $\mathrm{C} 10, \mathrm{C} 16$, and C22 for 7b) in equatorial position, respectively] and the center of a tetrahedral configuration, with the bond angles shown in Fig. 3. In compound 7a, the angles of C6-As1-C16, C16$\mathrm{As} 1-\mathrm{C} 10$ and $\mathrm{C} 6-\mathrm{As} 1-\mathrm{C} 10$ are $118.8^{\circ}, 111.5^{\circ}$ and 120.0°, respectively, and the angles of C8-As1-O2, C6-As1-C8, $\mathrm{C} 8-\mathrm{As} 1-\mathrm{C} 16, \mathrm{C} 8-\mathrm{As} 1-\mathrm{C} 10$ are $171.8^{\circ}, 102.2^{\circ}, 94.7^{\circ}$, and
104.4°, respectively. These values are similar to those of compound 7b. On the other hand, the intramolecular As1-O1 distances ($2.311 \AA$ for $7 \mathbf{a}$ and $2.391 \AA$ for $7 \mathbf{b}$) are longer than that of the As-O covalent bond (1.74-1.90 \AA) in spirobi $\left(1,3,2-\lambda^{5}-\right.$ dioxarsolane) derivative ${ }^{16}$ and are significantly shorter than the sum of the van der Waals radii ($3.37 \AA$) ${ }^{17}$ Thus, evidently, there is appreciable interaction between the oxygen and arsenic atoms of the compounds 7a,b as found previously for 2-acetylcyclopentadienylidenearsorane 13^{18} (Fig. 4). The ylidic C-As bond length $(1.881 \AA$ for $7 \mathbf{a}$ and $1.881 \AA$ for $7 \mathbf{b})$ falls between the sum of the covalent radii of singly-bonded and doubly-bonded carbon and arsenic (1.98 and $1.775 \AA$), respectively, ${ }^{19}$ signifying an appreciable amount of single-bond character, and consequently of dipolar character. Thus, the canonical structures 7a,b-A and 7a,b-B best represent the actual bonding in 7a,b (Fig. 4). The cyclohepta-2,4,6-trienone moieties in compounds 7a,b are nearly planar, and bond length alternations are clearly seen (1.37-1.49 \AA for 7a; 1.37-1.47 \AA for 7b); the results are also in agreement with the evidence obtained from the ${ }^{1} \mathrm{H}$ NMR spectra. The carbonyl absorptions appearing at $v_{\text {max }} 1568 \mathrm{~cm}^{-1}$ (for $7 \mathbf{7 a}$) and $1588 \mathrm{~cm}^{-1}$ (for 7b) are slightly lower than that found in cyclohepta-2,4,6-trienone ($v_{\text {max }} 1594 \mathrm{~cm}^{-1}$), ${ }^{20}$ and the $\mathrm{C}=\mathrm{O}$ bond lengths ($1.270 \AA$ for 7 a and $1.260 \AA$ for $7 \mathbf{b}$) do not differ appreciably from that of cyclohepta-2,4,6-trienone ($1.26 \AA$). $)^{10,21}$ The compounds $7 \mathbf{a}, \mathbf{b}$ are stable crystalline solids which can be kept in air without significant decomposition. Many arsonium ylides are easily hydrolysed in the presence of moisture or in acidic solutions to give an arsine oxide and an organic residue, ${ }^{1}$ but both $7 \mathbf{a}$ and $\mathbf{7 b}$ were recovered quantitatively after neutralization of the solution of $7 \mathbf{a}, \mathbf{b}$ in 0.5 M $\mathrm{H}_{2} \mathrm{SO}_{4}$. These features suggest that the compounds 7a,b seem to be stabilized by not only the electron-withdrawing groups of $-\mathrm{CO}_{2} \mathrm{Et}$ (for 7a) and -CN (for 7b) as well as the cyclohepta-2,4,6-trienyl group but also the coordinative interaction of the carbonyl oxygen to the arsenic element.

(c) Reactivity

Although reactions of phosphonium ylides with heterocumulenes have been reported in several papers, ${ }^{22}$ the reactions of the arsonium analogues with heterocumulenes are not familiar at all. In our previous study, ${ }^{9}$ 2-(triphenylphosphoranyl-idenemethyl)cyclohepta-2,4,6-trienone derivatives $\mathbf{2 a - c}$ were revealed to react with heterocumulenes to afford cycloheptaannulated heterocycles. In relation to the study and to clarify the relative reactivities of $\mathbf{7 a}, \mathbf{b}$ toward phosphoranes $\mathbf{2 a}, \mathbf{b}$, the reactions of 7a,b with heterocumulenes 14-17 and DMAD 27 were investigated. Reaction of compound 7a with carbon disulfide $\mathbf{1 4}$ was accomplished to give 3 -ethoxycarbonyl-2H-cyclohepta[b]furan-2-thione 20a (Scheme 2). On the other hand, the reaction of compound $\mathbf{7 b}$ with $\mathbf{1 4}$ under reflux did not proceed to give 20b, and 7b was recovered. Under similar conditions, the phosphonium ylides 2a,b did not react with 14, and the starting materials were recovered. Thus, the arsonium ylide $7 \mathbf{a}$ seems to be more reactive than the phosphonium ylides $\mathbf{2 a}, \mathbf{b}$, and cyano-substituted derivative $\mathbf{7 b}$ is less reactive as compared with 7a. The reaction conditions and the yields of the products are summarized in Table 1 (Entries 1-4). Similarly, the reactions of compounds 7a,b with phenyl isothiocyanate $\mathbf{1 5}$ were also carried out to give (Z)-3-ethoxycarbonyl- and (Z)-2-imino-3-cyano- $2 H$-cyclohepta $[b]$ furan (Z)-21a,b, respectively (Table 1 , Entries 5 and 6). The structures of compounds 20a, (Z)-21a and (Z)-21b were confirmed on the basis of comparison of the physical data with those of the authentic specimens. ${ }^{9}$ Compounds 7a,b undergo Wittig-type reaction with $\mathbf{1 4}$ and $\mathbf{1 5}$ to eliminate $\mathrm{Ph}_{3} \mathrm{As}=\mathrm{S}$ to lead to the intermediates $\mathbf{1 8 a}$ and $\mathbf{1 9 a}, \mathbf{b}$ as outlined in Scheme 2. The intermediates 18a and 19a,b then undergo 10π-electron cyclization to give 20a and (Z)-21a,b, respectively (Scheme 2). The Wittig-type reactions of arsonium ylides 7a,b with 15 occur selectively to eliminate $\mathrm{Ph}_{3} \mathrm{As}=\mathrm{S}$ to

Fig. 2 ORTEP drawing of compounds 7a and 7b with thermal ellipsoid plot (30% for $7 \mathbf{a}$ and 50% for $\mathbf{7 b}$ probability). Selected bond lengths (\AA). For 7a: Asl-O2 2.311, As1-C8 1.966(3), As1-C16 1.926(3), As1-C10 1.926(3), As1-C6 1.881(3), C9-O2 1.270(4), C5-C6 1.404(4), C5-C9 1.488(4), C5C15 1.419(4), C14-C15 1.396(6), C14-C29 1.377(6), C19-C29 1.367(6), C19-C24 1.388(5), C9-C24 1.414(4). For 7b: Asl-O1 2.391, As1-C10 1.945(2), As1-C16 1.938(2), As1-C22 1.930(2), As1-C8 1.881(2), Cl-O1 1.260(3), C2-C8 1.407(3), C1-C2 1.466(3), C2-C3 1.406(3), C3-C4 1.380(3), C4-C5 1.388(3), C5-C6 1.373(3), C6-C7 1.388(3), C1-C7 1.427(3).

7b

Fig. 3 Bond angles around nearly trigonal bipyramid structure of compounds 7a and 7b.
give $(Z) \mathbf{- 1 8 a}, \mathbf{b}$, respectively, while in the reactions of phosphonium ylides $\mathbf{2 a}, \mathbf{b}$ with $\mathbf{1 4}$, products $\mathbf{2 0 a}, \mathbf{b}$ were obtained in addition to $(Z)-\mathbf{2 1 a , b}$ (Table 1, Entries 7 and 8$).{ }^{9}$

On the other hand, the reactions of $7 \mathbf{a}, \mathbf{b}$ with diphenylcarbodiimide 16, which was prepared in situ by the reaction of phenyl isocyanate in the presence of a catalytic amount of $\mathrm{Ph}_{3} \mathrm{AsO},{ }^{23}$ did not undergo Wittig-type reaction and afforded 3-ethoxycarbonyl- and 3-cyano- N -phenyl-2-phenylimino-2 H cyclohepta $[b]$ imidazole $\mathbf{2 4 a , b}$ as single products, respectively (Scheme 3). The reaction conditions and the yields of the products are summarized in Table 1 (Entries 9 and 10). The structures of new compounds $\mathbf{2 4 a}, \mathbf{b}$ were assigned on the basis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, IR, UV-Vis spectra, mass spectral data, analytical data as well as comparison of the physical data with those of the related derivatives. ${ }^{11,24}$ Furthermore, it was found that neither 24a nor 24b is a mixture of (E) - and (Z) isomers. Although no evidence for the stereochemical situation for $\mathbf{2 4 a}, \mathbf{b}$ was obtained, we propose the (E)-isomers for $\mathbf{2 4 a}, \mathbf{b}$, because of the steric hindrance of two phenyl groups. The

Fig. 4
reactions of $\mathbf{7 a}, \mathbf{b}$ with $\mathbf{1 6}$ are considered to proceed via a formal [8 + 2]-type cycloaddition to give the intermediates 23a,b, which then eliminate $\mathrm{Ph}_{3} \mathrm{AsO}$ to yield 24a,b (Scheme 3). The formation of $\mathbf{2 4 a}, \mathbf{b}$ would be chemical evidence for the appreciable coordinating interaction between the carbonyl-oxygen and arsenic element in $\mathbf{7 a , b}$. Furthermore, compound $\mathbf{7 a}, \mathbf{b}$ seems to be reactive as compared with phosphonium ylides $\mathbf{2 a}, \mathbf{b}$ (Table 1, Entries 11 and 12), in which 7a undergoes Wittig-type reaction. ${ }^{9}$

Contrary to our expectation, the reactions of $\mathbf{7 a}, \mathbf{b}$ with phenyl isocyanate $\mathbf{1 7}$ afforded 3-ethoxycarbonyl- and 3-cyano2 H -cyclohepta $[b]$ furan-2-one 26a,b along with $\mathbf{2 4 a}, \mathbf{b}$, respect-

Table 1 Results for the reactions of compounds $\mathbf{2 a}, \mathbf{b}$ and $\mathbf{7 a}, \mathbf{b}$ with heterocumulenes 14-17 and DMAD 27

Reaction conditions						
Entry	Compd.	Cumulene or 27	Ratio of 14-17 or $\mathbf{2 7}$	Solvent ${ }^{a}$	Time t / h	Product Yield (\%)
1	7 a	14	Excess	$\mathrm{PhH}-\mathrm{CS}_{2}$	4 days	20 a (49)
2	7b	14	Excess	$\mathrm{PhH}-\mathrm{CS}_{2}$	4 days	7b (90)
3	2a	14	Excess	$\mathrm{PhH}-\mathrm{CS}_{2}$	4 days	2a (87)
4	2b	14	Excess	$\mathrm{PhH}-\mathrm{CS}_{2}$	4 days	2b (67)
5	7 a	15	5	Xylene	15.5	(Z)-21a (27)
6	7b	15	10	Xylene	11	(Z)-21b (49)
$7^{\text {b }}$	2a	15	5	Xylene	24	20a (15), (Z)-21a (5)
8^{b}	2b	15	5	Xylene	140	20b (9), (Z)-21b (59)
9	7a	16	5	Xylene	15	24a (21)
10	7b	16	10	Xylene	63	24b (71)
$11^{\text {b }}$	2a	16	5	Xylene	77	(Z)-21a (14)
$12^{\text {b }}$	2b	16	5	Anisole	24	2b (71)
13	7 a	17	5	Xylene	15	24a (5), 26a (42)
14	7b	17	10	Xylene	64	24b (57), 26b (23)
15^{b}	2a	17	5	Xylene	24	(Z)-21a (19), 26a (77)
$16^{\text {b }}$	2b	17	5	Xylene	168	(Z)-21b (22), 26b (58)
17	7a	27	5	Toluene	3	31a (29)
18	7 a	27	5	Xylene	1	31a (22)
19	7b	27	5	Xylene	36	31b (71)
20	2a	27	5	Xylene	12	2a (0)
21	2b	27	5	Xylene	40	2b (23)

${ }^{a}$ Unless otherwise specified, the reaction was carried out under reflux. ${ }^{b}$ Ref. 9.

14: $X=S$
15: $X=N P h$
18a: $X=S, R=\mathrm{CO}_{2} \mathrm{Et}$
19a: $X=N P h, R=\mathrm{CO}_{2} E t$ 19b: $X=N P h, R=C N$

20a: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}(49 \%)$
(20b: R = CN)

(Z)-21a: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}(27 \%)$ (Z)-21b: $R=C N \quad$ (49\%)

Scheme 2 Conditions: i, $\mathrm{CS}_{2}-\mathrm{PhH}$ or xylene, reflux.

Scheme 3 Conditions: i, xylene, reflux.

7a,b $+\quad \mathrm{PhN}=\mathrm{C}=\mathrm{O}$
17

23a: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$ (42\%) 23b: $R=C N \quad$ (23\%)

Scheme 4 Conditions: i, xylene, reflux.
ively (Scheme 4). The reaction conditions and the yields of the products are summarized in Table 1 (Entries 13 and 14). The structures of compounds 26a,b were confirmed on the basis of comparison of the physical data with those of the authentic specimens. ${ }^{9}$ We propose the pathways for the formation of $\mathbf{2 4 a}, \mathbf{b}$ and 26a,b as outlined also in Scheme 4. The reaction of $\mathbf{7 a}, \mathbf{b}$ with $\mathbf{1 7}$ gives the intermediates $\mathbf{2 5 a}, \mathbf{b}$ and $\mathrm{PhN}=\mathrm{AsPh}_{3}$, which probably reacts with excess $\mathbf{1 7}$ to generate diphenylcarbodiimide 16 and $\mathrm{Ph}_{3} \mathrm{AsO}$. The latter compound further reacts with $\mathbf{1 7}$ to generate $\mathrm{PhN}=\mathrm{AsPh}_{3}$ and CO_{2}, and thus, $\mathbf{1 6}$ is generated in a catalytic process. ${ }^{11,23}$ The intermediates 25a,b undergo 10π-electron cyclization to yield 26a,b, respectively, and the generated $\mathbf{1 6}$ reacts with $\mathbf{7 a}, \mathbf{b}$ to give $\mathbf{2 4 a , b}$ (vide supra). The reactions of $\mathbf{7 a}, \mathbf{b}$ with $\mathbf{1 7}$ do not give 19a,b (Scheme 2), while those of $\mathbf{2 a}, \mathbf{b}$ with $\mathbf{1 7}$ give $\mathbf{1 9 a}, \mathbf{b}$ to result in the formation of (Z)-21a,b (Table 1, Entries 15 and 16). ${ }^{9}$

Finally, we investigated the reactions of 7a,b with dimethyl acetylenedicarboxylate (DMAD) 27. Compound 7a,b reacted with 27 to give dimethyl 1-(ethoxycarbonyl)azulene-2,3-dicarboxylate 31a and dimethyl 1-cyanoazulene-2,3-dicarboxylate 31b, respectively (Scheme 5). The reaction conditions and the yields of the products are summarized in Table 1 (Entries
$7 \mathrm{a}, \mathrm{b}+\mathrm{MeO}_{2} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}$ 27

and / or

$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$
28a, b
a: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$ b: $\mathrm{R}=\mathrm{CN}$
29a, b

31a (29\% in Toluene)
31a (22\% in Xylene)
31b (71\% in Xylene)

Scheme 5 Conditions: i, toluene or xylene, reflux

17-19). Under similar conditions, attempted reaction of phosphonium ylides 2a,b with 27 did not proceed, and complete or partial decomposition of 2a,b was observed (Table 1, Entries 20 and 21). The structures of $\mathbf{3 1} \mathbf{a}^{25}$ and $\mathbf{3 1 b}{ }^{26}$ were assigned on the basis of comparison of the physical data. We propose two reaction pathways for the formation of 31a,b as follows; Michaeltype addition of the ylide carbon atom of $\mathbf{7 a}, \mathbf{b}$ to 27 leads to the intermediates 28a,b and/or 29a,b. Then, the As-O bonded intermediates 28a,b $(c f .23 a, b)$ eliminate $\mathrm{Ph}_{3} \mathrm{AsO}$ to result in the formation of azulene derivatives 31a,b. An alternative pathway is a ring-opening of 29a,b to give the intermediates 30a,b and the following intramolecular Wittig-type reaction gives 31a,b.

In summary, we have demonstrated the synthesis of 2-(triphenylarsoranylidenemethyl)cyclohepta-2,4,6-trienone derivatives $7 \mathbf{a}, \mathbf{b}$ for the first time. Compounds $7 \mathbf{a}, \mathbf{b}$ were isolated as fairly stable crystalline compounds and X-ray structure analysis clarified that they are stabilized by not only the electron-withdrawing groups but also the interaction of the carbonyl oxygen of the cyclohepta-2,4,6-trienone with the arsenic element. The compounds 7a,b seem to be more reactive than the corresponding phosphonium ylides $\mathbf{2 a} \mathbf{a} \mathbf{b}$, and they react with heterocumulenes and DMAD to provide a variety of cyclohepta-annulated five-membered heterocycles and an azulene derivative. Further studies concerning the synthesis of the related compounds will be continued.

Experimental

IR spectra were recorded on a Horiba FT-710 spectrometer UV-Vis spectra were recorded on a Shimadzu UV-3101PC spectrometer. Mass spectra and high-resolution mass spectra (FAB) were run on JEOL JMS-AUTOMASS150 and JMSSX102A spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an AVANCE600 spectrometer using CDCl_{3} as a solvent, and the chemical shifts are given relative to internal SiMe_{4} standard; J-values are given in Hz . Arsonium salts $\mathbf{8 a}{ }^{12}$ and $\mathbf{8} \mathbf{b}^{12,13}$ were prepared according to the procedure reported in the literature. Mps were recorded on a Yamato MP-21 apparatus and are uncorrected. All reactions except hydrolysis were carried out under anhydrous conditions and dry nitrogen atmosphere.

Preparation of 2-[triphenylarsoranylidene(ethoxycarbonyl)-methyl]cyclohepta-2,4,6-trienone 7a and 2-[triphenylarsoranyl-idene(cyano)methyl]cyclohepta-2,4,6-trienone 7b

A solution of $\mathbf{8 a}(6.15 \mathrm{~g}, 13 \mathrm{mmol})$ or $\mathbf{8 b}(5.49 \mathrm{~g}, 13 \mathrm{mmol})$ and $\mathrm{Bu}^{t} \mathrm{OK}(2.89 \mathrm{~g}, 26 \mathrm{mmol})$ in THF ($40 \mathrm{~cm}^{3}$) was stirred at rt for 1.5 h . To this solution was added 2-chlorocyclohepta-2,4,6trienone $\mathbf{1 0}(1.81 \mathrm{~g}, 13 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 17 h at rt . After the THF was removed in vacuo, the resulting residue was dissolved in AcOEt and filtered through Celite to remove insoluble materials. The filtrate was concentrated and the residue was purified through column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ by using hexane- $\mathrm{AcOEt}(3: 1)$ as the eluent to give the products $7 \mathbf{a}(838 \mathrm{mg}, 13 \%)$ and $\mathbf{7 b}(800 \mathrm{mg}$, 14%), respectively.
For 7a: yellow prisms; mp $152-153{ }^{\circ} \mathrm{C}$ (decomp. from hexane-AcOEt); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.74\left(3 \mathrm{H}, \mathrm{t}, J 7.1,-\mathrm{CH}_{3}\right), 3.52(2 \mathrm{H}$, q, $\left.J 7.1,-\mathrm{CH}_{2}-\right), 6.48(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H} 7), 6.51(1 \mathrm{H}, \mathrm{dd}, J 9.4$, $9.5, \mathrm{H} 5), 6.90$ ($1 \mathrm{H}, \mathrm{dd}, J 9.4,11.0, \mathrm{H} 6$), 7.09 (1 H , dd, J9.5, 11.0, $\mathrm{H} 4), 8.37(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H} 3), 7.30-7.40(9 \mathrm{H}, \mathrm{m}, m, p-\mathrm{Ph})$, $7.50-7.60(6 \mathrm{H}, \mathrm{m}, o-\mathrm{ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.8\left(-\mathrm{CH}_{3}\right), 59.2\left(-\mathrm{CH}_{2}-\right)$, 75.8 (C=As), 123.8 (C5), 124.9 (C7), 125.2 (C3), 128.7 (Ph), $129.9(\mathrm{Ph}), 131.1(\mathrm{Ph}), 135.7(\mathrm{Ph}), 136.4(\mathrm{C} 6), 137.0$ (quart), 155.5 (quart), 168.4 (quart), 178.3 (quart); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 1664, 1586, 1496, 1437, 1422, 1413, 1367; $\lambda_{\text {max }}(\mathrm{MeCN}) / \mathrm{nm}$ $\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 267$ (4.31), 404 (4.08), 475 (4.09); $m / z 496\left(\mathrm{M}^{+}, 10 \%\right), 77(100)$ (Found $\mathrm{M}^{+}+1,496.1052 ; \mathrm{C} ; 69.9$, $\mathrm{H} ; 5.0 . \mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{3}$ As requires $M+1,496.1020 ; \mathrm{C} ; 70.16, \mathrm{H}$; 5.08\%).

For 7b: yellow prisms; mp 197-199 ${ }^{\circ} \mathrm{C}$ (decomp. from $\mathrm{PhH}-$ hexane); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.57(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{H} 7), 6.61(1 \mathrm{H}, \mathrm{dd}$, $J 9.4,9.6, \mathrm{H} 5), 7.05(1 \mathrm{H}, \mathrm{dd}, J 9.4,11.1, \mathrm{H} 6), 7.14(1 \mathrm{H}, \mathrm{dd}$, $J ~ 9.6,10.8, \mathrm{H} 4), 7.65$ ($1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{H} 3$), $7.32-7.75$ (15 H , br, $-\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 54.8(\mathrm{C}=\mathrm{As}), 123.0(-\mathrm{CN}), 123.4(\mathrm{C} 7), 123.8$ (C3), 123.9 (C5), $129.0(\mathrm{Ph}), 131.0(\mathrm{Ph}), 131.3(\mathrm{Ph}), 135.0(\mathrm{Ph})$, 136.3 (C4), 137.4 (C6), 157.7 (C2), 176.6 (C1); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 2169,1588,1501,1442,1436,1413,1354 ; \lambda_{\text {max }}(\mathrm{MeCN}) /$ $\mathrm{nm}\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 401$ (4.08), 479 (4.13), 567 (2.71), 586 (2.70), 664 (1.94); $m / z 496\left(\mathrm{M}^{+}, 10 \%\right)$, 77 (100) (Found $\mathrm{M}^{+}+1$, 450.0861; C; 71.8, H; 4.4, N; 3.1. $\mathrm{C}_{27} \mathrm{H}_{21}$ NOAs requires $M+1$, 450.0839; C; 72.15, H; 4.49, N; 3.12\%).

Attempted hydrolysis of $7 \mathbf{a}, \mathrm{~b}$ in acidic conditions

A solution of $7 \mathbf{a}$ ($60 \mathrm{mg}, 0.12 \mathrm{mmol}$) or $7 \mathrm{bb}(54 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right.$-EtOH $\left.1: 1 ; 5 \mathrm{~cm}^{3}\right)$ was stirred at rt for 12 h . This mixture was neutralized with aqueous NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified through column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ by using AcOEt as the eluent to recover $7 \mathbf{7 a}(60 \mathrm{mg}, 100 \%), 7 \mathrm{~b}(49 \mathrm{mg}, 91 \%)$.

Reaction of 7a,b with carbon disulfide 14

A solution of $7 \mathbf{a}(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ or $\mathbf{7 b}(90 \mathrm{mg}, 0.2 \mathrm{mmol})$ in a mixture of carbon disulfide $14\left(3 \mathrm{~cm}^{3}\right)$ and $\mathrm{PhH}\left(3 \mathrm{~cm}^{3}\right)$ was heated under reflux for the period indicated in Table 1. After evaporation of the solvent, the residue was purified through column chromatography on SiO_{2} by using hexane$\operatorname{AcOEt}(1: 1)$ as the eluent to give 20a ($23 \mathrm{mg}, 49 \%$) or the starting material $7 \mathbf{7 b}(81 \mathrm{mg}, 90 \%$) (Table 1, Entries 1 and 2).

Attempted reaction of 2a,b with carbon disulfide 14

A solution of $\mathbf{2 a}(90 \mathrm{mg}, 0.2 \mathrm{mmol})$ or $\mathbf{2 b}$ ($81 \mathrm{mg}, 0.2 \mathrm{mmol}$) in a mixture of carbon disulfide $14\left(3 \mathrm{~cm}^{3}\right)$ and $\mathrm{PhH}\left(3 \mathrm{~cm}^{3}\right)$ was heated under reflux for the period indicated in Table 1. After evaporation of the solvent, the residue was purified through column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ by using hexane-AcOEt ($2: 1$) as the eluent to give $\mathbf{2 a}(78 \mathrm{mg}, 87 \%)$, 2b ($54 \mathrm{mg}, 67 \%$) (Table 1, Entries 3 and 4).

Reaction of 7a,b with phenyl isothiocyanate 15

A solution of $7 \mathrm{a}(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ or $7 \mathrm{~b}(45 \mathrm{mg}, 0.1 \mathrm{mmol})$ and phenyl isothiocyanate $\mathbf{1 5}$ in xylene ($3 \mathrm{~cm}^{3}$) was heated under reflux for the period indicated in Table 1. After evaporation of the solvent, the residue was purified through column chromatography on SiO_{2} by using hexane- $\mathrm{AcOEt}(3: 1)$ as the eluent to give the product (Z)-21a ($8 \mathrm{mg}, 27 \%$) or (Z)-21b ($12 \mathrm{mg}, 49 \%$) (Table 1, Entries 5 and 6).

Reaction of 7a,b with diphenylcarbodiimide 16

A solution of phenyl isocyanate $17(238 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{AsO}(6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in xylene $\left(5 \mathrm{~cm}^{3}\right)$ was heated at $90^{\circ} \mathrm{C}$ for 1.5 h to give $\mathbf{1 6}$ in situ. The generation of $\mathbf{1 6}$ was confirmed by IR spectrum. To this solution was added 7 a (198 mg , $0.4 \mathrm{mmol})$ or $7 \mathbf{b}(90 \mathrm{mg}, 0.2 \mathrm{mmol})$, and the mixture was heated under reflux for the period indicated in Table 1. After evaporation of the solvent, the residue was purified through column chromatography on SiO_{2} by using hexane- $\mathrm{AcOEt}(3: 1)$ as the eluent to give the product $\mathbf{2 4 a}(7 \mathrm{mg}, 5 \%)$ or $\mathbf{2 4 b}$ ($44 \mathrm{mg}, 61 \%$) (Table 1, Entry 9 and 10).

For 24a: dark red prisms; mp $160-161^{\circ} \mathrm{C}$ (from hexane$\mathrm{AcOEt}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 7.2,-\mathrm{CH}_{3}\right), 3.54(2 \mathrm{H}, \mathrm{q}, J 7.2$, $\left.-\mathrm{CH}_{2}-\right), 6.41(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{H} 8), 6.64(1 \mathrm{H}, \mathrm{dd}, J 9.7,10.5, \mathrm{H} 6)$, 6.85-6.89 (3H, m, Ph), $6.86(1 \mathrm{H}, \mathrm{dd}, J 9.5,9.7, \mathrm{H} 7), 7.02(1 \mathrm{H}$, dd, $J 10.5,11.3$, H5), 7.17 (2H, dd, $J 7.7,7.9, \mathrm{Ph}), 7.37$ (2 H , d, $J 7.5, \mathrm{Ph}), 7.45(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{Ph}), 7.54(2 \mathrm{H}, \mathrm{dd}, J 7.5,7.7, \mathrm{Ph})$, $7.83(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{H} 4) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.8\left(-\mathrm{CH}_{3}\right), 60.6\left(-\mathrm{CH}_{2}\right)$, 104.4 (quart), 112.1 (C8), $120.3(\mathrm{Ph}), 121.8(\mathrm{Ph}), 125.8$ (C4), 127.8 (C6), 128.8 (Ph), 128.8 (Ph), 129.1 (Ph), 129.6 (Ph), 134.2 (C7), 135.0 (C5), 135.5 (quart), 146.7 (quart), 150.0 (quart), 151.5 (quart), 154.4 (quart), 164.8 (quart); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 1692,1619,1583,1532,1475,1433 ; \lambda_{\text {max }}(\mathrm{MeCN}) / \mathrm{nm}$ ($\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) 279 (4.48), 456 (4.25); $m / z 368\left(\mathrm{M}^{+}\right.$, 12%), 77 (100) (Found $\mathrm{M}^{+}+1,369.1595$; C; 77.9, H; 5.3, N; 7.5. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M+1,369.1603 ; \mathrm{C} ; 78.23, \mathrm{H} ; 5.48, \mathrm{~N}$; 7.61%).

For 24b: yellow prisms; mp $211-214{ }^{\circ} \mathrm{C}$ (from hexane$\mathrm{AcOEt}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.53(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{H} 8), 6.78(1 \mathrm{H}, \mathrm{dd}, J 9.7$, $10.0, \mathrm{H} 6), 6.94$ (2H, d, $J 7.6, \mathrm{Ph}$), 7.03 (1H, dd, $J 9.7,10.0, \mathrm{H} 7$), $7.08(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ph}), 7.17$ ($1 \mathrm{H}, \mathrm{dd}, J 9.7,11.0, \mathrm{H} 5$), $7.28(2 \mathrm{H}$, dd, $J 7.5,7.6, \mathrm{Ph}), 7.40(2 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{Ph}), 7.46(1 \mathrm{H}, \mathrm{d}, J 11.0$, $\mathrm{H} 4), 7.50(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{Ph}), 7.58(2 \mathrm{H}, \mathrm{dd}, J 7.6,7.6, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 113.4(\mathrm{C} 8), 113.8$ (quart), $122.1(\mathrm{Ph}), 123.7(\mathrm{Ph})$, $125.9(\mathrm{Ph}), 128.7(\mathrm{Ph}), 128.7(\mathrm{Ph}), 128.8(\mathrm{C} 6), 129.3(\mathrm{Ph}), 130.0$ (Ph), 134.5 (quart), 135.9 (C7), 136.5 (C5), 149.4 (quart), 150.2 (quart), 151.5 (quart), 154.4 (quart) and one carbon overlapped; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2209,1631,1583,1534,1470,1438$, 1272; $\lambda_{\text {max }}(\mathrm{MeCN}) / \mathrm{nm}\left(\log \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 212$ (4.24), 283 (4.71), 452 (4.56); $m / z 321$ ($\mathrm{M}^{+}, 15 \%$), 69 (100) (Found $\mathrm{M}^{+}+1$, 322.1364; C; 82.0, $\mathrm{H} ; 5.0, \mathrm{~N} ; 13.0 . \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3}$ requires $M+1$, 322.1344; C; 81.95, H; 5.01, N; 13.04\%)

Reaction of 7a,b with phenyl isocyanate $\mathbf{1 7}$

A solution of $7 \mathbf{a}(198 \mathrm{mg}, 0.4 \mathrm{mmol})$ or $\mathbf{7 b}(90 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $17(238 \mathrm{mg}, 2.0 \mathrm{mmol})$ in xylene $\left(4 \mathrm{~cm}^{3}\right)$ was heated under reflux for the period indicated in Table 1. After evaporation of the solvent, the residue was purified through column chromatography on SiO_{2} by using hexane- $\mathrm{AcOEt}(1: 1)$ as the eluent to give the product $\mathbf{2 4 a}(8 \mathrm{mg}, 5 \%$), 26a ($37 \mathrm{mg}, 42 \%$), 24b ($37 \mathrm{mg}, 57 \%$), and $\mathbf{2 6 b}(8 \mathrm{mg}, 23 \%$), respectively (Table 1 , Entry 13 and 14).

Reaction of 7a,b with DMAD 27

A solution of 7a ($198 \mathrm{mg}, 0.4 \mathrm{mmol}$) or $\mathbf{7 b}(180 \mathrm{mg}, 0.4 \mathrm{mmol})$ and DMAD 27 ($284 \mathrm{mg}, 2.0 \mathrm{mmol}$) in xylene ($5 \mathrm{~cm}^{3}$) was heated under reflux for the period indicated in Table 1. After evaporation of the solvent, the residue was purified through column chromatography on SiO_{2} by using hexane- $\operatorname{AcOEt}(3: 1)$ as the
eluent to give the product 31a ($28 \mathrm{mg}, 22 \%$) and 31b (76 mg , 71\%) (Table 1, Entry 17-19).

For 31a: reddish violet needles; mp $168-169{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (lit. $\left.{ }^{25} 175-176{ }^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.42(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.2,-\mathrm{CH}_{3}\right), 3.95(3 \mathrm{H}, \mathrm{s}), 4.03(3 \mathrm{H}, \mathrm{s}), 4.41(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.-\mathrm{CH}_{2}-\right), 7.83(2 \mathrm{H}, \mathrm{dd}, J 9.9,9.9, \mathrm{H} 5, \mathrm{H} 6), 8.05(1 \mathrm{H}, \mathrm{dd}, J 9.8$, $9.9, \mathrm{H} 7$), 9.84 ($1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{H} 8$), 9.89 ($1 \mathrm{H}, \mathrm{d}, J 9.9, \mathrm{H} 4$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1738,1695,1457,1443,1426,1263,1238$; $m / z 316\left(\mathrm{M}^{+}, 100 \%\right)$, 69 (100) (Found $\mathrm{M}^{+}, 316.0916 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$ requires 316.0885).
For 31b: reddish purple needles; mp $92.5-93.5^{\circ} \mathrm{C}$ (from hexane-AcOEt) (lit. $\left.{ }^{25} 93-94{ }^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.97(3 \mathrm{H}, \mathrm{s})$, $4.07(3 \mathrm{H}, \mathrm{s}), 7.85(1 \mathrm{H}, \mathrm{dd}, J 10.0,10.0, \mathrm{H} 6), 7.88(1 \mathrm{H}, \mathrm{dd}$, $J 10.0,10.0, \mathrm{H} 7$), 8.14 ($1 \mathrm{H}, \mathrm{dd}, J 9.8,10.0, \mathrm{H} 5), 8.86(1 \mathrm{H}, \mathrm{d}$, $J 9.8, \mathrm{H} 4), 9.64(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{H} 8) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2200$, 1734, 1704, 1457, 1444, 1443, 1425, 1264; m/z 269 ($\mathrm{M}^{+}, 31 \%$), 237 (100) (Found $\mathrm{M}^{+}+1$, 270.0783. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{4}$ requires 270.0767).

Attempted reaction of 2a,b with DMAD 27

A solution of $\mathbf{2 a}(181 \mathrm{mg}, 0.4 \mathrm{mmol})$ or $\mathbf{2 b}(162 \mathrm{mg}, 0.4 \mathrm{mmol})$ and DMAD $25(284 \mathrm{mg}, 2.0 \mathrm{mmol})$ in xylene $\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux for the period indicated in Table 1. After evaporation of the solvent, the residue was purified through column chromatography on SiO_{2} by using hexane- $\mathrm{AcOEt}(2: 1)$ as the eluent to give 2b ($37 \mathrm{mg}, 23 \%$) (Table 1, Entry 21 and 22).

X-Ray structure determination of $7 \mathbf{a}, \mathbf{b} \dagger$

Single crystal of 7 a was recrystallized from AcOEt.
Crystal data for 7a. All the measurements were performed using a Rigaku AFC5S radiation diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation: yellow prisms, $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{As}$, $M=496.00$, orthorhombic, $a=15.780(6), b=17.021(6), c=$ 8.864(5) $\AA, V=2380.760010(2) \AA^{3}, T=298 \mathrm{~K}$, space group $P_{\text {Pna2 }}^{1}$ (no. 33), $Z=4, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=2.1415 \mathrm{~mm}^{-1}, 9937$ reflections measured, 2341 unique ($R_{\text {int }}=0.036$). The final $R\left(F^{2}\right)$ and $w R\left(F^{2}\right)$ were 0.048 and 0.152 for observed reflections $\left[F^{2}>\right.$ $2 \sigma\left(F^{2}\right)$] used in all calculations. ${ }^{27}$

Single crystal of $\mathbf{7 b}$ was recrystallized from PhH -hexane.
Crystal data for 7b. All the measurements were performed using a Rigaku RAXIS-RAPID radiation diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation: yellow prisms, $\mathrm{C}_{27} \mathrm{H}_{20}$ ONAs, $M=449.38$, monoclinic, $a=8.0799(5), b=$ 13.4532(7), $c=9.6920(4) \AA, V=1043.41(8) \AA^{3}, T=298 \mathrm{~K}$, space group $P 2_{1}$ (no. 4), $Z=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=16.48 \mathrm{~cm}^{-1}, 2490$ reflections measured, 2517 unique ($R_{\text {int }}=0.068$). The final $R\left(F^{2}\right)$ and $w R\left(F^{2}\right)$ were 0.036 and 0.103 for observed reflections [$\left.F^{2}>3.0 \sigma\left(F^{2}\right)\right]$ used in all calculations. ${ }^{28}$

Acknowledgements

Financial support from Waseda University Grants for Special Research Projects is gratefully acknowledged. The authors also thank the Materials Characterization Central Laboratory, Waseda University, for technical assistance with spectral data, elemental analyses, and X-ray structure analyses.
\dagger CCDC reference number(s) 187524-187525. See http://www.rsc.org/ suppdata/p1/b2/b205612g/ for crystallographic files in .cif or other electronic format.

References

1 (a) D. Lloyd, I. Gosney and R. A. Ormiston, Chem. Soc. Rev., 1987, 16, 45; (b) H. Yaozeng and S. Yanchang, Adv. Organomet. Chem., 1982, 20, 115; (c) D. Lloyd and I. Gosney, The Chemistry of Organic Arsenic, Antimony, and Bismuth Compounds, ed. S. Patai, John Wiley
\& Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1994, pp. 657-693.
2 M. Shao, X. Jin, Y. Tang, Q. Huang and Y. Huang, Tetrahedron Lett., 1982, 5343.
3 X. Zong-Xiang and Z. Zhi-ming, Acta Chim. Sin. (Engl. Ed.), 1983, 41, 148
4 F. Zhao-Chang and S. Yang-Chang, Acta Chim. Sin., 1984, 42, 759.
5 I. Kawamoto, T. Hata, Y. Kishida and C. Tamura, Tetrahedron Lett., 1972, 1611.
6 I. Kawamoto, T. Hata, Y. Kishida and C. Tamura, Tetrahedron Lett., 1971, 2417.
7 I. Kawamoto, Y. Sugiyama and Y. Kishida, Tetrahedron Lett., 1973, 877.

8 I. Kawamoto, Y. Sugiyama, N. Soma and Y. Kishida, Chem. Lett., 1972, 931.
9 M. Nitta and S. Naya, J. Chem. Res. (S), 1998, 522 ((M), 1998, 2363).

10 H. Yamamoto, M. Ohnuma and M. Nitta, J. Chem. Res. (S), 1999 173 ((M), 1999, 901).
11 M. Nitta, Y. Mitsumoto and H. Yamamoto, J. Chem. Soc., Perkin Trans. 1, 2001, 1901.
12 T. Takayasu and M. Nitta, J. Chem. Soc., Perkin Trans. 1, 1997, 681
13 H. Depoorter, J. Lieer and G. Van. Mierlo, Bull. Soc. Chim. Belg., 1968, 77, 521.
14 (a) C. M. Moorhoff, Synth. Commun., 1998, 28, 2925; (b) A. J. Bellamy, G. Howat and I. S. MacKirdy, J. Chem. Soc., Perkin Trans. 2, 1978, 786.
15 (a) T. Nozoe, K. Takase and T. Sato, Proc. Jpn. Acad., 1954, 30, 473; (b) G. Biggi, F. Del Cima and F. Pietra, J. Am. Chem. Soc., 1973, 95, 710; (c) F. Pietra, Acc. Chem. Res., 1979, 12, 132.
16 (a) R. O. Day, J. M. Holmes, A. C. Sau, J. R. Deviller, R. R. Holmes and J. A. Delters, J. Am. Chem. Soc., 1982, 104, 2127; (b) R. H. Fish and R. S. Tannous, Organometallics, 1982, 1, 1238; (c) C. A.

Poutasse, R. O. Day, J. M. Holmes and R. R. Holmes, Organometallics, 1985, 4, 708; (d) R. R. Holmes, R. O. Day and A. C. Sau, Organometallics, 1985, 4, 714.

17 A. Bondi, J. Phys. Chem., 1964, 68, 441.
18 (a) G. Ferguson, D. F. Rendle, D. Lloyd and M. I. C. Singer, J. Chem. Soc., Chem. Commun., 1971, 1647; (b) G. Ferguson and D. F. Rendle, J. Chem. Soc., Dalton Trans., 1975, 1284; (c) G. Ferguson and D. F. Rendle, J. Chem. Soc., Dalton Trans., 1976, 171.
19 L. Pauling, The Naure of the Chemical Bond, Cornell University Press, Ithaca, New York, 1948.
20 A. Krebs and B. Schrader, Justus Liebigs Ann. Chem., 1967, 709, 46.
21 M. J. Barrow, O. S. Mills and G. Filippini, J. Chem. Soc., Chem. Commun., 1973, 66.
22 (a) M. Regitz, Methoden der organische chemie: Organische phosphorverbindungen Bande 1, Georg Thieme Verlag, Stuttgart, New York, 1982; H. Staudinger and J. Meyer, Helv. Chim. Acta, 1919, 2, 619; (c) P. Frøyen, Acta Chem. Scand. Ser. B, 1974, 28, 586; (d) T. Saito, M. Nakane, T. Miyazaki and S. Motoki, J. Chem. Soc., Perkin Trans. 1, 1989, 2140; (e) S. Trippet and D. M. Walker, J. Chem. Soc., 1959, 3874; (f) Y. Ohshiro, Y. Mori, T. Minami and T. Agawa, J. Org. Chem., 1970, 35, 2076; (g) H. Bestmann and S. Pfohl, Angew. Chem., Int. Ed. Engl., 1969, 10, 762

23 (a) J. J. Monagle, J. Org. Chem., 1962, 27, 3851; (b) P. Frøyen, Acta Chem. Scand., 1969, 23, 2935.
24 I. Ueda, M. Matsuo, K. Taniguchi, S. Shigenaga and T. Ogawa, Jpn Kokai Tokkyo Koho, 1989, Jp 6403, 172 [8903, 172] (Chem. Abstr., 1989, 111, 57734g).
25 M. Oda and Y. Kitahara, Chem. Ind., 1969, 27, 920.
26 M. Oda and Y. Kitahara, J. Chem. Soc., Chem. Commun., 1969, 352.
27 CRYSTAN, Crystal Structure Analysis Package, MAC Science Co., Ltd., Yokohama, Kanagawa 222-0033, Japan, 1994.
28 G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

